Long standing questions about compass and straightedge construction were finally settled by Galois theory. 长期存在的问题,指南针和直尺建设的最后解决伽罗瓦理论。
The main means used in the paper are group theory, galois field, module algebra and linear algebra. 文中涉及的主要理论有群论,伽罗华域,模代数和线性代数。
A number of ancient problems concerning Compass and straightedge constructions were finally solved using Galois theory. 从目前的罗盘和直尺古代建筑的一些问题终于解决了使用伽罗瓦理论。
The broad question of which equations are solvable by algebraic operations was definitely and comprehensively answered by Galois. 哪些方程可用代数运算求解,这个重要问题由Galois明确而透彻地回答了。
Research of Design Techniques for Reconfigurable Arithmetic Unit in Galois Field 可配置有限域运算单元设计技术研究
However, the lack of cooperation also brings redundant data due to the linear dependence, even when the Galois field of the coding coefficients is large enough. 但正是由于缺乏协同,即使编码系数的有限域足够大,仍然存在线性相关冗余数据,从而浪费了源节点的带宽。
Modular inversion is a part of the kernel for computations in the Galois field GF ( p) used by many public key cryptosystems. 公钥密码系统以其算法设计简单、安全性高已经成为密码学领域的一个非常重要的研究课题。
Finally, the Galois theory is applied to matrix C-ring to obtain some useful results. 其次结合伽罗华理论将上环的一些主要性质推广到C-环,进而得到了C-环中的一些有意义的结论。
According to algebraic property that a direct sum of Galois fields is isomorphic to a finite ring, the linear block code for multiplexing systems is proposed. 依据有限域直和与有限环同构的代数性质,对多路复用系统构造线性分组码。
Galois and Mathematics Education 伽罗瓦和数学教育
Then it particularly states the definition and algorithm of Galois field, and analyses the realization of the limited field multiplier based on the dual basis. 第三章分析讨论了RS码的特点,给出了伽罗华有限域的定义与运算规则,推导和分析了基于对偶基的有限域乘法器实现方法。
This thesis is composed of following parts: the fundamental theory of the modern cryptology is briefly researched, in which the mathematic model of cryptology, data encrypt principle and Galois field theory related with elliptic curve crypto is discussed. 研究了现代密码学相关的基本理论,介绍了密码系统的数学模型、数据加密原理和与椭圆曲线加密密切相关的有限域理论;
The m-seqnence's runs, component sequences and vector sequences in Galois Field are discussed. 本文讨论了Golois域上m序列的游程、分量序列和向量序列。
In order to realize error-correcting of Quick Response Code, error correction coding theory has been researched. Encoding and decoding of Reed-Solomon have been fulfilled by means of advanced language based on Galois field of GF ( 28). 在研究纠错技术的基础上,采用高级语言,实现了快速响应矩阵码中基于伽罗华域GF(28)的Reed-Solomon编码和译码算法。
Then we show an algorithm design of the elliptic curve crypto based on Galois field. 设计完成了一种基于有限域的椭圆曲线加密算法,主要包括适合于168bit椭圆曲线加密的有限域乘法、加法、除法器的实现;
On the dialectic point of view, the influences of Cauchy's systematical study on the theory of permutation to understanding Galois Theory to mathematicians in France are appraised. 从辩证的角度,评价了柯西系统的置换理论研究对法国数学家在深刻理解伽罗瓦数学工作过程中所产生的正、反两方面的影响。
Entwining structure and the cohomology of coalgebra Galois extension Entwining结构和余代数Galois扩张的上同调
In this paper, we discuss the bases and their duals of Galois rings over Z_4 and introduce the polynomial basis with its applications in linear shift registers. 主要讨论了伽罗华环上的基及其迹对偶基,以及多项式基的若干性质和多项式基在线性移位寄存器中的应用。
Galois correspondence for fields and some rings 域和某些环上的Galois对应
This paper proposed space-time block codes ( STBC) based on Galois theory. 提出基于Galois理论的空时分组码(STBC)。
The arithmetic operations in Galois field is central in the implementation of Reed-Solomon coders, storage and cryptographic algorithms. 有限域的运算已经广泛应用于Reed-Solomon码、存储领域和各种加密算法中。
The parallel multiplier architecture over Galois field GF ( 2~ m) was proposed. 提出了一种并行的有限域GF(2m)乘法器结构。
In this paper some characteristics of Z-Continuous Lattices arc given in order to complete and improve the relations between Galois connection and Z-distribution. 本文给出了Z-连续格的一些特征,从而揭示了Z-连续格与Galois连通性和Z-分配性的关系。
An Enumeration Theorem in Symplectic Geometry Over a Galois Field and the Construction of PBIB Designs 有限域上辛几何中的一个计数定理与PBIB设计的构作
Secondly, Galois field theory and finite group theory related with elliptic curve cryptography are discussed. 然后介绍了与椭圆曲线加密密切相关的有限域、有限群等理论。
Based on the Galois theory, we know the root solution of real coefficient cubic equation. 由域论的Galois理论,我们知道实系数三次方程有根式解。
Firstly, the basic algebra theory of Galois Field ( GF) and the principles of RS codes are presented. The improved Berlekamp-Massey ( BM) iterative algorithm is then analyzed in detail. 首先介绍了有限域的基本代数理论和RS码原理,然后详细分析了改进后的Berlekamp-Massey(BM)迭代算法。
We proposed a new type of Galois field multiplier, and designed an improved algorithm RS encoder. The design has simplified the hardware circuit and reduced the system costs. 提出了一种新型的伽罗华域乘法器并结合它完成了改进算法的RS编码器设计,该设计简化了硬件电路,降低了系统的开销。
An arithmetic unit is also designs, which can do the Galois field arithmetic operations of addition, subtraction, multiplication, squaring, inversion and division. 论文还提出了有限域运算单元的设计方法,这个运算单元可以同时完成素数域和二进制域上的所有运算,包括加法、减法、乘法、平方、求逆和除法。