The Bethe ansatz equations are obtained from the periodic boundary conditions. 由周期边界条件推出贝特假设方程。
Algebraic Bethe Ansatz for the Osp ( 1| 2) model Osp(12)模型的代数Betheansatz方法
Algebraic Bethe Ansatz for the Supersymmetric t-J Model With Reflecting Boundary Conditions in FBF Background 在FBF背景下带反射边界条件的超对称t-J模型的代数Betheansatz方法
First, chirped femtosecond soliton-like solution in explicit form is obtained by using ansatz method, and then the linear stability for the soliton-like solution is analyzed by variational method. 我们用拟解法给出飞秒啁啾类孤波解的解析表达式,并利用变分法分析其线性稳定性;
By using algebraic Bethe ansatz method, it has been shown that the monodromy matrix satisfies the Yang-Baxter equation on both a finite interval and an infinite interval. So the integrability of this model is proved. 利用代数Betheansatz方法,找到了此模型的量子monodromy矩阵所满足的量子YangBaxter方程,并证明了其可积性。
The application of generalized coherent state ansatz in heavy nuclel fission 广义相干态方法在重核裂变中的应用
Based on the concept of soliton control, we consider the higher-order Ginzburg-Landau Equation with variable coefficient, and the chirped femtosecond soliton-like solution in explicit form is obtained by using ansatz method. 从孤子控制的概念出发,对变系数的高阶Ginzburg-Landau方程进行初步地研究,用拟解法给出可变参数系统中飞秒啁啾类孤波解的解析表达式。
The eigenvalue and two_ particle scattering matrix of spin_ladder model are obtained with coordinate Bethe Ansatz method. 自旋梯可积模型的本征能量和两体散射矩阵可通过Betheansatz的方法求得。
Based on the Bethe ansatz method, the explicit ground state is got for the full physical regime from the Tonks limit to the strong attractive limit. 运用Betheansatz方法,我们得到系统在整个物理区域(从强吸引极限到Tonks极限)的精确基态解。
We explore the exact analytical relations between a variety of quark mass matrices and CP violation Our results can be applied to the phenomenological studies of different ansatz of mass matrices and their CP-violating effects. 本文给出一类夸克质量矩阵与CP破坏参量的精确解析关系.有关结果适用于唯象研究不同质量矩阵模型及其CP破坏效应的细微差别。
They made the ansatz that the Dirac sea is empty. 他们假定Dirac海是空的。
Finally, we list the nesting boundary K matrices, which play a crucial role for obtaining the n-particle solution and finding the Bethe ansatz equations, the eigenvalues of the transfer matrices and the energy spectrum of the system by means of the nested algebraic Bethe ansatz method. 最后给出了模型的嵌套的边界K矩阵的具体形式,从而为运用嵌套Betheansatz方法求解该模型的多粒子解、Betheansatz方程以及系统的能谱打下了很好的基础。
In the framwork of the graded quantum inverse scattering method ( QISM), we obtain the eigenvalues and eigenvectors of supersymmetric t-J model with reflecting boundary conditions in FBF background. The corresponding Bethe ansatz equation are also obtained. 在阶化量子反散射的框架中,得到FBF背景下,带反射边界条件的超对称t-J模型的本征值和本征矢,及相应的Betheansatz方程。
Based on the symbolic computation and a new expansion ansatz of solutions of the Riccati ( equation), the extended tanh-function method was used to find the new types of exact travelling wave solutions of the double sine-Gordon equation. 基于符号计算和Riccati方程解的新展式,利用扩展的双曲正切函数法给出双sine-Gordon方程的新的精确行波解。
The effects of static and dynamical deformation on isoscalar GQR and isovector GDR are discussed in the framework of semiclassical approximation with scaling ansatz. 在半经典近似框架下,利用Scaling变换,讨论了静态形变及动力学形变对同位旋标量巨四极共振(GQR)及同位旋矢量巨偶极共振(GDR)的影响。
Utilizing the algebraic Bethe Ansatz method, the Hamiltonian of q-boson hopping model and its eigenvalue equation are calculated under the integrable open boundary condition. 利用代数Betheansatz方法在可积开边界条件下推广了q形变玻色子模型,得到可积开边界条件下此模型的哈密顿量及其本征方程。
Coordinate Bethe Ansatz for Generalized t-J Model 推广t-J模型的坐标Betheansatz方法
Firstly, using the eigenvalue of Hamiltonian and Bethe ansatz equations, we derive the thermodynamics Bethe ansatz equations ( TBAE) based on the string hypothesis for both a repulsive and an attractive interaction. 首先利用该系统的Bethe-ansatz方程和能量本征值,分别在排斥和吸引势两种情况下依据弦假设求解Bethe-ansatz方程,并通过对系统自由能的变分,给出热力学Bethe-ansatz方程(TBAE)。
Then, based on the fundamental equation, we present the chirped femtosecond soliton-like solution by ansatz method and discuss the transmission property of the soliton-like solution in optical fiber. 随后,我们利用拟解方法给出飞秒啁啾类孤波解的解析表达式,并讨论该解在光纤系统中的传输特性。
After defining the reference state, we solve the eigenvalue problem of the transfer matrix and give the Bethe ansatz equations and the energy spectrum of the Hamiltonian in the framework of quantum inverse scattering method. 然后通过构造转移矩阵的参考真空态并利用嵌套Betheansatz方法,给出了系统的能量本征值,本征矢和Betheansatz方程。至此我们得到了一维N分量开边界Bariev模型的精确解。
A boson-fermion model with two bands of different masses is formulated. The exact eigenstates of the model Hamiltonian are constructed by using the Bethe ansatz. 用Betheansatz方法构造了双带boson-fermion模型Hamiltonian量的精确本征态。
It is caused by that they made a wrong ansatz, that the undetermined function H is polynomial, and they did not apply the Maxwell relation in black hole thermodynamics in a good manner. 这是由于Banerjee等人错误地假设了其中的待定函数H为多项式的形式,并且没有彻底运用黑洞热力学的麦克斯韦关系。
An exact dark solitary wave solution with nonlinear chirp is obtained by using an ansatz and the transmission characteristics of the solitary wave solution in NIMs are studied in detail. 采用拟解方法,得到了一种带有非线性啁啾的暗孤立波解,并详细分析了这种啁啾暗孤立波在负折射材料中的传输特性。
Based on a normalized Schrodinger equation describing the propagation of optical pulses in NIMs, the exact dark solitary wave solution with nonlinear chirp in NIMs is obtained by using an ansatz method. Furthermore, the transmission stabilities of and the interaction properties are analyzed in detail. 以负折射率材料中描述超短脉冲传输的归一化薛定谔方程为模型,通过拟解法获得一种负折射率材料中的啁啾暗孤波,并详细分析了其传输稳定性和相互作用特性。
In chapter six, the sinh-Gordon equation expansion method is further extended by generalizing the sinh-Gordon equation and constructing new ansatz solution of the considered equation. 第六章通过一般化sinh-Gordon方程和构造所研究的方程新的试探解来扩展sinh-Gordon方程展开法。
Constructing integrable lattice models and obtaining the eigenstates, energy spectrum and Bethe ansatz equations of the systems may provide a tool for studying classical solutions of string, supersymmetric gauge theory and integrable systems. 构造精确可解格点模型,求其本征能谱、本征态函数和Betheansatz方程等,可为研究超弦的经典解、超对称规范理论与可积体系的关系提供可能工具。
The exact one-soliton solution is presented by the ansatz method for one set of parametric conditions. 在第一类参数约束条件下,通过拟解法给出变系数高阶非线性薛定谔方程的精确1-孤子解。
We construct the general form of the Hamiltonian of the model and study the integrability of the model through the coordinate Bethe ansatz method. We also obtain the energy spectrum, the specific integrable boundary conditions and the corresponding Bethe ansatz equations. 我们构造了具有一般性边界的多分量Bariev模型的哈密顿量,利用坐标Betheansatz方法详细地研究了模型的可积性,并得到了系统的能谱、可积边界条件及Betheansatz方程。