Implement of Key-exchange Based on the Hidden-bases via Ergodic Matrix over Finite Field 利用有限域上遍历矩阵实现基于隐藏基的密钥交换
In this paper, by using the methods of functional analysis, the proof of an ergodic theorem was given. 利用泛函分析的方法给出一个遍历定理的另一证明。
Research on MIMO Ergodic Capacity with Co-Channel Interference and Noise 具有同信道干扰的MIMO各态历经信道容量研究
Homogenization of Nonautonomous Hamilton-Jacobi Equations in Stationary Ergodic Setting 平稳遍历介质中非自治Hamilton-Jacobi方程的均匀化
Study on Application of Using Ergodic Theory in Enterprise Business Level's Knowledge Management Audit 各态历经在企业业务层知识管理审计中的应用研究
The bases selected by both parties are hidden by making use of ergodic matrix over finite field. 通过利用有限域上的遍历矩阵对当事双方各自所选择的基进行隐藏,实现了交换操作。
An improved method is derived from the standard particle swarm optimization. Firstly, the particles are initialized by chaos technique which is ergodic, stochastic and regular. 在标准粒子群优化算法的基础上给出了一种改进策略,利用混沌变量的随机性、遍历性、规律性对粒子群进行初始化选择。
The ergodic capacity and optimal power allocation policy of broadband MIMO-OFDM systems in wireless fading channels is derived based on the system model. 推导了MIMO-OFDM系统在衰落信道下的各态历经容量、最优发送策略、使用等功率分配时的容量上界以及相对于单天线OFDM系统的容量增益。
Approximately optimum power allocation based on ergodic capacity for cooperative communication systems 协同通信系统中基于遍历容量的近似最优功率分配
Given the stochastic and ergodic characteristics of fuzzy variables, a chaos optimization algorithm is introduced to solve the planning problem. 结合混沌变量的随机遍历特性,将混沌优化算法应用于输电网非线性混合整数规划模型的优化求解。
Solve the GP Equation by the Homogeneous Balance Method Homogenization of Nonautonomous Hamilton-Jacobi Equations in Stationary Ergodic Setting 利用齐次平衡法求GP方程的Jacobi椭圆函数解平稳遍历介质中非自治Hamilton-Jacobi方程的均匀化
Topology, Ergodic Theory, Real Algebraic Geometry. 拓扑,遍历理论,实代数几何。
Capacity-related issues such as outage probability, outage capacity and antennas selection based ergodic capacity for DAS are studied and simulation results are presents and analyzed. 研究了分布式天线系统中断概率和中断容量和基于遍历容量的天线选择问题,给出了仿真结果和进行了相应的分析。
Ergodic theorems and the existence of invariant measures are two major topics in Ergodic theory. 遍历定理和不变测度的存在性是遍历理论中的二个基本研究主题。
Finally, we obtain some results of the convergence rates of ergodic limits and approximation for K-regularized resolvent families. 我们也证明了K-正则预解算子族的遍历极限的收敛率和逼近的一些结果。
A different model of state's transition is adopted, and the model structure is ergodic. 本文中的分类器采用了完全不同的状态转移方式,所形成的模型结构为遍历型的结构模型,该模型结构在保持字形结构完整的前提下,不受字号的影响。
Zhang, Lin and Hou ( 1999) made a study to the property of transition function and obtained the conditions of transition function is stochastically monotone, strongly ergodic, polynomial uniformly convergent. exponentially and Feller transition function. Zhang,Lin和Hou(1999)对转移函数的性质进行了讨论,得到了转移函数是随机单调的,强遍历,多项式一致收敛,指数遍历和Feller转移函数的条件。
In this paper, if a matrix system is generalized Ergodic, the system is stable; 本文证明:若矩阵系统是广义各态历经的,则系统是稳定的;
This paper deals with topologically ergodic maps. 本文研究拓扑遍历映射。
In this paper, nonlinear dynamics of Hamiltonian systems and dynamical stochasticity in ergodic theory are analyzed. 本文通过哈密顿系统的非线性动力学研究,以及遍历性理论的动力学随机性研究对此问题进行了分析。
We give an ergodic theorem for the dual of Feller operator. 本文给出关于Feller算子的对偶算子的一个遍历定理。
In part ⅰ, ergodic properties in dynamical systems with only a few degrees of freedom are discussed. 在第一部分,我们讨论了少自由度动力学系统的遍历特征。
In this paper, we use the method of two-parameter semigroups to investigate the strong ergodicity of non-homogeneous Markov processes in abstract space. A correspondent relation between two-parameter semigroups and the strongly ergodic Markov processes is obtained. 本文利用双参数半群的方法研究了一般状态的非时齐马氏过程的强遍历性,得到了双参数半群与强遍历马氏过程之间的一种对应关系。
The Application of Averaging Method in the Theory of the Ergodic 平均方法在遍历理论中的应用
We expand some properties of ergodic, strong-mixing and weak-mixing to F-ergodic, F-strong-mixing and F-weak-mixing. 将遍历、强混合和弱混合的一些重要性质推广到族F-遍历、族F-强混合和族F-弱混合上;
Some fundamental methods in mathematical analysis are applied to prove the unique decomposition theorem: the distance between vector-valued pseudo almost periodic functions in metric spaces and almost periodic functions is an ergodic perturbation. 应用数学分析中的基本方法证明了唯一分解定理,即距离空间中的向量值伪概周期函数和概周期函数之间的距离是一个遍历扰动。
Buffeting response processes of the Phoenix Bridge and the Yamen Bridge are stationary and ergodic by close verification. 研究的主要结论有:(1)经过平稳性和各态历经性检验,凤凰一桥和崖门大桥抖振响应过程具有广义平稳性和广义各态历经性。
Ergodic theory and dynamical system is one of the most successful branch of mathematics since the 20th century. 遍历论和动力系统是20世纪以来最富有成就的数学分支之一。
In the dissertation, we consider ergodic theory and its applications of discrete-time Markov chains and continuous-time Markov processes. 本学位论文研究了离散时间马氏链和连续时间马氏过程的遍历性的理论及其应用。
First of all, we introduce the basic theory of invariant measure and ergodic theory of Hopf Markov chain. 首先我们介绍遍历理论和不变测度的基本知识,以及Hopf马氏链的遍历理论。