involutory

网络  逆矩阵; 对合的

计算机



双语例句

  1. A Rank Equality of Matrix and the Generalizations of Equality for Involutory Matrices
    一个矩阵秩恒等式与对合矩阵秩等式的推广
  2. In this paper, similar canonical form of involutory matrix on integral number ring is given, and we prove that similar canonical form of involutory matrix is unique.
    本文利用组合的性质证明了一种整数矩阵求逆矩阵的方法,给出了求逆矩阵的公式,并通过了实例验证。
  3. In this paper we discuss the algebraic expression of involutory perspective in three-dimensional projective space.
    本文给出了三维射影空间上对合透视的代数表达式。
  4. Some Results for Idempotent and Involutory Matrices
    关于幂等矩阵和对合矩阵的几个结果
  5. Algebraic Expression of the Involutory Homology in Higher Dimensional Projective Space
    高维射影空间对合透视的代数表达式
  6. Linear Maps Preserving Involutory Matrices
    保持对合矩阵的线性映射
  7. The several equivalent representations for involutory transformation and idempotent transformation in linear space ( including infinite dimensional) are given.
    给出数域F上线性空间(不一定是有限维的)的线性变换是对合变换与幂等变换的几个等价描述。
  8. Normal Form of Involutory Matrices and Its Application over Z/ qkZ
    有限局部环Z/q~kZ上对合矩阵标准形的应用
  9. The method of constructing involutory matrix
    对合矩阵的构建方法
  10. From the Desargues 'Involutory Theorem to the Butterfly Theorem
    从Desargues对合定理到蝴蝶定理
  11. On the basis of the results for idempotent and involutory matrices in, we further establish several rank equalities for involutory matrices.
    在文献[7,11]的基础上,进一步讨论了有关幂等矩阵和对合矩阵的问题,给出了对合矩阵的几个秩等式。
  12. The analysis to the involutory matrix and involutory transformation
    对合矩阵与对合变换剖析
  13. An introduction to k-generalized sub-orthogonal matrix and its properties are represented, and relation between k-generalized sub-orthogonal matrix, sub-symmetric matrix and generalized involutory matrix are studied.
    给出k-拟次正交矩阵的概念,研究了它的性质以及拟次正交矩阵与次对称矩阵、拟对合矩阵间的关系。
  14. Several equivalent representations for idempotent transformation and involutory transformation in linear space
    线性空间的幂等变换与对合变换的几个等价表示
  15. By using involutory transformations, the stationary conditions of one kind of variables were transformed into basic equations of two kinds of variables.
    应用对合变换,将一类变量变分原理的驻值条件变换为两类变量的基本方程。