With further analysis of these outliers we saw a significant number of poorly performing transactions. 对这些异常值进一步分析之后,我们会看到大量执行糟糕的交易。
Thus, if outliers are present within the dataset the mean and standard deviation are located accordingly. 因此,如果在数据集内存在异常值的话,那么度量值和标准偏差会得到相应的定位。
When the outliers were excluded, a new boxplot was created. 当异常值被排除在外时,会创建一个新的箱线图。
These metrics are more resistant to the presence of outliers. 这些工具对于异常值的存在有更大的抵抗力。
You can use the properties of a cluster to describe outliers. 因此,可以使用一个集群的属性来描述离群值。
However, these parameters are less resistant to the presence of outliers. 但是,这些参数对异常值的存在有较低的抵抗力。
The result also warns about outliers. 结果还指出出现了离群值。
Clearly, we can see that the presence of outliers impacts these measures of location. 明显的是,我们可以看到异常值的存在影响到了位置的度量。
Identify potential skew and outliers. 识别潜在的歪斜和异常值。
The remainder of this article discusses how to visualize outliers interactively in Cognos. 本文剩下的内容讨论如何在Cognos中交互式地可视化离群值。
The higher this degree, the more likely the records in the cluster can be considered outliers. 这个度越高,则该集群中的记录越有可能是离群值。
This data can now be used to determine the percentage of outliers for each page and troubleshoot potential bottlenecks. 现在您可以使用该数据来决定每一页面和故障排除潜在瓶颈的百分比。
So how do these outliers and dispersion affect the values of the mean and standard deviation? 那么这些异常值和分散度是怎么影响度量值和标准偏差的呢?
So what conclusions can we draw from the composition of the10% of outliers? 所以我们可以从那10%的异常值中得出什么结论呢?
However, none of these three methods are particularly resistant to outliers. 但是,这三种方法中没有一种对于异常值有较强的抵抗力。
Robust regression is resistant to the influence of outliers and can be used as a good tool identifying outliers. 稳健回归方法可使求出的回归估计不受异常值的强烈影响,并且能更好的识别异常点。
The traditional algorithm of mining outliers cannot mine outliers in data stream effectively. 传统的离群点挖掘算法无法有效挖掘数据流中的离群点。
A method of removing the estimating outliers of Doppler frequency is studied. 研究去除多普勒频率估计野值点的方法。
Simulation showed both two multiscale wavelet transform algorithms have good results in elimination of outliers. 经仿真实验验证,这两种多尺度小波变换算法都能够很好地剔除野值,效果明显。
Outliers detection method based on K-means and agglomerative clustering 基于K-均值聚类和凝聚聚类的离群点查找方法
This algorithm combining wavelet de-noising with Kalman filtering algorithm could eliminate outliers more effectively. 此算法将小波去噪与卡尔曼滤波算法结合起来,能够更有效地剔除野值。
Application of Distance Sum-based Outliers Detection in Taxation System 基于距离和的孤立点检测在税务系统中的应用
This paper adopts seasonal ARIMA model and outliers analysis on import-export volume. 本文采用了季节性ARIMA模型并结合离群值分析的方法对进出口额进行研究。
The algorithm deals with outliers by the technique of distance-based and clusters by the method of extension-based. 该算法使用了基于距离的技术来处理孤立点,引进了一种基于扩展的方法进行聚类。
Because of using L2 norm, Principal Component Analysis ( PCA) method is sensitive to outliers. 主成分分析方法由于使用了L2范数,因此对异常值较敏感。
Propose a new agglomerative hierarchical clustering based method to eliminate outliers, with clustering tree to identify outliers. 提出一种基于凝聚层次聚类消除孤立点的新方法,借助聚类树识别孤立点。
It introduces an outliers detection method based on random forest. 提出一种基于随机森林方法的异常样本(outliers)检测方法。
Kalman filtering algorithm which is a common method of outliers elimination needs harsh conditions and is hard to achieve. 常见的野值剔除方法即卡尔曼滤波算法条件苛刻,不易实现。
Find microarrays in a data set which are outliers in this distribution. 找出分布中异常的资料组的微阵列。
A method of detection of outliers from the exponential distribution is given by sample fractile to construct test statistics. 利用样本分位数构造检验统计量,给出来自于指数分布总体异常数据的一种检测方法。