polynomials

英 [ˌpɒlɪˈnəʊmiəlz] 美 [ˌpɑˌliˈnoʊmiəlz]

网络  多项式



双语例句

  1. Mathematicians have identified a group of numbers called Jones polynomials that define each type of knot.
    数学家证明出了被称为琼斯多项式的一系列公式用以定义每一种绳结。
  2. This determinant is a special case of the resultant of two polynomials.
    这个行列式是两个行列式的结式的特殊情形。
  3. By using unified method, we investigate decomposability of real or complex cubic polynomials in several elements.
    这里,本文将运用统一的方法对实数域和复数域上的多元三次多项式的分解问题加以讨论。
  4. By Studying the properties Chebyshev polynomials, Some identities of Chebyshev Polynomials and Lucas numbers are obtained.
    通过对契贝谢夫多项式性质的研究,得到了契贝谢夫多项式与鲁卡数的平方和的一组恒等式。
  5. Interpolation methods so far available do not give the interpolating functions directly in the form of algebraic polynomials.
    现有插值方法,一般都不把插值函数直接表示为代数多项式。
  6. The resultant is an important concept over the theory of polynomials.
    结式是多项式理论中的一个重要概念。
  7. A new type of generalized polynomials neural network was proposed to reconstruct3D implicit surface from the scattered points.
    针对点云数据的三维重建问题,提出了一种隐曲面重构的广义多项式神经网络新方法。
  8. An algorithm about the stability test of edge polynomials is provided.
    我们提供了一种棱边多项式的稳定性检验算法。
  9. All ordinary polynomials have series expansion of orthogonal polynomials, while Legendre polynomials, Hermite polynomials and Laguerre polynomials are special orthogonal polynomials.
    一般多项式都可以展开为正交多项式的级数形式,而勒让德多项式、厄米特多项式和拉盖尔多项式都是典型的正交多项式。
  10. Orthonormal basis in L2, Legendre polynomials, basis of trigonometric functions.
    正交基在L2,勒让德多项式,三角函数的基础。
  11. The structure of unary and binary polynomials over a lattice is determined in this paper.
    本文确定了任意格上一元多项式和二元多项式的结构,并给出了三元多项式的几个结果。
  12. The theory of the local polynomials interpolation method was introduced.
    介绍了局部多项式插值方法的基本原理;
  13. Factorization of adjoint polynomials of a Γ-graph and its chromatic property analysis
    Γ-型图的伴随多项式的因式分解及色性分析
  14. This paper demonstrates the generalized Rolle theorem and discussed the zero of Legendre polynomials.
    对广义罗尔定理进行了证明,并应用广义罗尔定理讨论了勒让德多项式的零点。
  15. The relation between polynomials that constitute the high-order derivatives and integer partition is found out.
    给出了组成高阶导数的各项多项式与整数拆分的关系。
  16. Unary representation of sparse polynomials and operations.
    一元稀疏多项式的表示及运算。
  17. Uniqueness of Meromorphic Functions and Differntial Polynomials that Share One Value
    亚纯函数和微分多项式分担一个值的唯一性
  18. Let's say you want to multiply two polynomials together.
    比方说,你要乘两个多项式在一起。
  19. Polynomials with only real zeros are also a basic problem in combinatorics.
    至于实零点多项式的研究,更是数学本身的基本问题之一。
  20. The sum of absolute value of Hermite polynomials coefficient and its properties
    埃尔米特多项式系数的绝对值和及其性质
  21. In this paper, we show that the independence polynomials of double stars are unimodal and locate their modes.
    证明了双星图的独立多项式是单峰的,并且找到了峰的位置。
  22. We give a method of determining irreducible polynomials over a unique factorization domain.
    给出了唯一分解整环上多项式不可约的一个判别法。
  23. The polynomial factors in the harmonic-oscillator wave functions are called Hermite polynomials after a French mathematician.
    谐振子波函数的多项式因子随一法国数学家之名而叫做厄米多项式。
  24. Two Factorization Theorems of Adjoint Polynomials of Graphs with Application
    图的伴随多项式的两个因式分解定理及其应用
  25. In particular, the chromatic polynomials of complements of all wheels with any missing consecutive spokes are given.
    特别的,对轮图中去掉一些连续弦后所得到的图的补图,给出了它的色多项式的计算公式。
  26. The Application of Combinatorial Transformations on Identities, Polynomials and Simple Graphs
    组合变换在等式、多项式及简单图中的应用
  27. Results Obtained some linear combination identities involving Hermite polynomials and parabolic cylinder function.
    目的研究厄密多项式与抛物线柱函数线性组合的性质。
  28. The concept of edge polynomials with variable length is introduced. Stability of such polynomials is analyzed.
    引入变长度棱边多项式的概念,并分析了其稳定性。
  29. Sum of Products of Bernoulli Polynomials and Gegenbauer Polynomials
    关于贝努利多项式和盖根堡多项式乘积的和
  30. A method using elementary transformation for calculating minimum polynomials of matrices and vectors are given.
    分别给出计算矩阵的最小多项式和向量关于矩阵的最小多项式的初等变换方法。