The quasilinearization method can be further recognized through these theorization and discussion. This will further allow you to customize your security translation. 从而对拟线性化法有更进一步的认识。这将进一步允许您自定义安全性转换。
Using the dehydrogenation of benzene in high temperature as an example, this paper compares the calculated results of the quasilinearization method with the modified simplex method and discusses the merits, defects and usable region of the quasilinearization method. 以苯高温脱氢反应为例,比较了拟线性化法与改进的单纯形法的计算结果。讨论了拟线性化法的优、缺点及适用范围。
The solution of the equation and estimation of the parameters were carried out by the quasilinearization method. 用拟线性化方法时方程求解并进行参数估计,得到了离子在聚苯胺膜中的扩散系数。
Generalized Quasilinearization Method of Initial Value Problems in R~ n Spaces R~n空间中初值问题的广义拟线性化方法
This paper proves that the quasilinearization method for parameter estimation of ordinary differential equation in chemical reaction kinetics essentially belongs to the region of Gauss-Newton method. 本文通过理论推导,证明在反应动力学常微分方程参数估值中所采用的拟线性化法在本质上仍然属于高斯&牛顿法的范畴。
As a good example for the application of quasilinearization, this paper gives a numerical solution of heat conduction in a circular fin with variable thermal parameters. 本文以热特性参数可变时环形肋片的热传导问题乃例,阐述此法的具体应用。
At first, according to the data of Gause's experiments on two yeast populations, six parameters of two-population competition system are estimated by quasilinearization method. 根据Gause对两种酵母种群竞争实验的数据,对一个两种群竞争方程中的六个参数和两个初始条件做了估计。
Quasilinearization Method for First Order Initial Value Problems on Time Scales 时间模上一阶初值问题的拟线性方法
The periodic boundary value problems for impulsive dynamic equations on time scales are investigated by means of quasilinearization method in this paper. 本文利用拟线性化方法对时标上脉冲动力方程的周期边值进行了研究。
This paper will use quasilinearization method to study the convergence of the solution of the nonlinear sin-gular systems. 本文将利用拟线性化方法研究非线性奇异系统的逼近解的收敛速度问题。
In chapter three, the quasilinearization method is extended to nonlinear singular system with control, we obtain two monotone iterative sequences converging uniformly and quadratically to the solution of the given problem. 第三章考虑一类带有控制项的非线性奇异微分方程,采用拟线性化方法进行处理,得到逼近解序列一致且平方收敛于方程的解。